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UK 

Received 18 November 1986 

Abstract. The discrete scale invariance of quasi-periodic systems leads to a scaling relation- 
ship n= L- ' f (  L )  between a characteristic dynamic variable 11 and length L, where f ( L )  
is a periodic function of In L. The dynamic exponent z can be calculated for diffusion, 
spin wave and phonon dynamics (where I1 is respectively r ,  w, w' where r and w are 
characteristic rates or frequencies respectively) by exploiting a crossover argument which 
results in z = d , +  ? where d ,  is the fractal dimension and ? is the length scaling exponent 
for the conductance. The latter exponents and hence z, are calculated for a Fibonacci 
chain model ( ( d , ,  ?, z )  = (1 ,  1 .2 , )  and, via an exact bond moving technique, for the Penrose 
lattice ( (d f ,  ?, z )  = ( 2 , 0 , 2 ) ) .  The technique also provides the thermal exponent of the 
Heisenberg spin model on the two quasi-crystals ( v = I ,  X, respectively). 

Static and dynamic properties can become anomalous because of the scale invariance 
(Kadanoff 1966, Wilson 1971) occurring at thermal or geometric transitions (see, for 
example, Stinchcombe 1985a), where a correlation length diverges, or in the incom- 
mensurate limit, in which the size of a periodically repeated basic cell diverges (see, 
for example, Bak 1982). Quasi-periodic systems, such as the Fibonacci chain (Levine 
and Steinhardt 1984) and Penrose lattice (Penrose 1979) treated here, provide interest- 
ing models, because of their simple hierarchical nature, of a diverging basic cell, and  
hence of incommensurate behaviour. They have also received much current attention 
as models of quasi-crystals, of which real examples appear to have been found 
(Shechtman er al 1984). 

Dynamical properties of the simplest quasi-periodic system, the Fibonacci chain, 
have been discussed by Luck and Petritis (1986), and by Bell (1986), following earlier 
work on a related quasi-periodic Schrodinger problem by Kohmoto et a1 (1983) using 
a recursion relation for the trace of a transfer matrix. An alternative approach by 
Khantha and Stinchcombe (1987) treats diffusion on the Fibonacci chain using exact 
scaling equations for the 'waiting time' distribution, yielding z = 2 for the dynamic 
exponent, consistent with numerical work by Luck and  Petritis (1986) for the density 
of states in their related problem. 

Dynamical properties of the higher dimensional ( d  3 2) quasi-periodic systems are 
much more difficult to treat: until now there has been a discussion, using Conway's 
theorem, of the extended against localised nature of states in the Penrose lattice 
(Tsunetsugo er al 1985) and, very recently, numerical work on the tight-binding 
electronic spectrum (Ogadaki and Nguyen 1986). The aim of the present letter is to 
point out certain general features and inter-relationships and then to provide an analytic 
approach to dynamical properties of quasi-periodic systems which yields in particular 
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the dynamic exponent for the two-dimensional Penrose lattice; the approach is of more 
general applicability, for example giving very simply the previously obtained result 
for the dynamic exponent of the Fibonacci chain. 

The method expoits the hierarchical construction of the quasi-periodic system under 
consideration, using decimation to work backwards along the hierarchy. The recursive 
construction of the hierarchy is simple for the Fibonacci chain (Levine and Steinhardt 
1984) and has also been given in a convenient way by Robinson (1975) for the more 
difficult case of the Penrose lattice. The philosophy of reversing Robinson’s construc- 
tion has recently been used by Godrkche et a1 (1986) to obtain thermal properties of 
Ising spins on the Penrose lattice, in an approximation using bond moving (Migdal 
1975, Kadanoff 1976). A similar procedure is used here, except that for our consider- 
ations bond moving is exact. 

Such recursively generated systems have a ‘discrete’ scale invariance which leads, 
as will be explained, to an interesting periodicity in the dynamical (and other) 
behaviour. Our approach to the dynamics relies on a series of connections, given 
previously in other contexts, which relate the behaviour in an asymptotic critical regime 
via a crossover argument to the length scaling of a static quantity analogous to a 
diffusion constant; that in turn is related by an Einstein relation to the scaling of 
conductance and density, to which the decimation and bond-moving technique can 
be relatively simply applied. Because the conductance scaling is the same as the scaling 
of a Heisenberg model thermal variable (Stinchcombe 1979) the technique also yields 
thermal exponents for the Heisenberg spin system on the quasi-crystals (Fibonacci 
chain and Penrose lattice), as well as the conductance exponent. 

The Fibonacci chain is constructed from two line segments (‘tiles’) A,,, Bo, by the 
recursively applied rules (Levine and Steinhardt 1984) 

An+, = AnBn Bn+, = An (1) 

where AB denotes the line segment obtained by adding A and B end-to-end with A 
to the left of B. The line segment length ratio An/Bn is the same for all n if it takes 
the ‘Golden mean’ value T = 5 (1 + J5). The resulting system is then scale invariant 
under discrete dilatations with length scale factor b = T. A similar recursive construction 
of the Penrose lattice has been given by Robinson (1975) (see Grunbaum and Shephard 
1986, Godrkche er a1 1986) using two triangular tiles with coloured (black or white) 
vertices, combined according to auxiliary matching rules. Each tile is reproduced, 
with colour reversal and dilation by length scale factor b = T, by combining two tiles 
from the previous stage of construction. Two such steps thus take the lattice into a 
scaled version of itself. Both the Fibonacci and Penrose lattices thus possess ‘discrete’ 
scale invariance (limited to a special scale factor b (= T, T*) or any integer power of 
that b ) .  

The dynamic and other processes considered here will arise from the coupling of 
sites of the quasi-periodic lattices by bonds corresponding to the two line segments of 
the Fibonacci chain or the four distinct types of edge of Robinson tiles in the Penrose 
lattice (a fuller description of these edges is given in Godrkche er a1 (1986)). For 
phonon and magnon dynamics, and diffusion processes, the bonds represent spring, 
exchange and hopping constants respectively. These three processes are governed by 
similar basic equations of motion, and so can be discussed together using the dynamic 
variable 

R = w 2 ,  r 
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for phonons and magnons (where w is the characteristic frequency) and diffusion 
(where r is the characteristic rate), respectively. 

It can be shown that, because of the discrete scale invariance (scale factor b ) ,  the 
length scaling behaviour of the characteristic dynamic variable is, in general, for small 
R and large length L 

R( L )  = L-’f( L )  (3) 
where z is the dynamic exponent (to be determined) and f ( L )  is a periodic function 
of In L with period In b. The result (3) follows because explicit scaling of systems with 
the discrete scale invariance can at most relate R(bL) to R(L).  The ratio of these 
quantities for small R (i.e. large L )  is the eigenvalue A of a linearised renormalisation 
group equation (cf (15)): 

R( bL)/R( L )  = A = b-’. (4) 
The last step can be taken to define z. Equation (3) is consistent with (4) provided 
first that the z determined by (4) is the dynamic exponent in (3), and secondly that 
f( Lb)  is the same as f( L ) ;  from this the periodicity property stated under (3) follows, 
for example by considering the function y defined by y (In L )  =f(L). The above 
argument is of course not limited to dynamic quantities, and related viewpoints have 
previously been given for thermal properties (Nauenberg 1975), particularly in Berker 
lattices (Derrida er a1 1984) and other fractals (Stinchcombe 1985b). A further con- 
sequence is that a general dynamic quantity P(R) of hierarchically constructed systems, 
such as the Berker or Sierpinski gasket fractals (Mandelbrot 1977) or the Fibonacci 
chain or Penrose lattice, should for small frequencies behave like 

P(R) = RxF(R) (5) 
where F is a periodic function of In R with period z In b. Such behaviour has indeed 
been seen in the numerical investigations by Maggs and Stinchcombe (1986) of the 
dynamic response of the Sierpinski gasket fractal, and by Luck and Petritis (1986) of 
the density of states of the Fibonacci chain. 

Instead of obtaining the dynamic exponent z by directly scaling the dynamic 
variable R, as indicated in (4), we may get it by scaling static quantities whose exponents 
are related to z by the following crossover argument, similar to ones given previously 
for critical anomalies produced by a diverging correlation length (Harris and Stinch- 
combe 1983, Aharony 1985). We consider the composite ‘tile’ obtained at the nth 
stage of construction of, for example, the Fibonacci chain. This ‘tile’, of length L, a b”, 
is then periodically repeated to obtain a system (typical of that considered in numerical 
work on the Fibonacci chain) whose dynamics at long ‘wave’ length L ( L  >> L,) is 
characterised by dynamic variable R with the ‘normal’ dependence 

n = D(L,)L-* (L>>Lrl )  ( 6 )  
where D is an effective diffusion constant, spin wave stiffness, or square of velocity 
for sound, depending on the situation considered; it is convenient to use the diffusion 
case, the others being analogous. We are, however, interested in the anomalous 
dependence R a  L-’ which according to (3) obtains in the limit L, + 00 at fixed (and 
large) L. (For this argument we suppress the f ( L )  factor in (3), though it is strictly 
present and can be exhibited with only a slight lengthening of equations). The two 
limits L >> L, and L<c L, are included in the scaling form 

R = L-’g(L/L,) (7) 
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where the scaling function has the asymptotic dependences 

g(x )  - constant x<c 1 
-_, 

- x '  - x >> 1. 

As a consequence, the dependence on L,  of the diffusion constant in (6)  has to be 

D (  L,,) L:-2 (9)  

involving the dynamic exponent. z can therefore be obtained from the n dependence 
of the static quantity D(L, , ) ,  i.e. from the scaling of the diffusion constant between 
two successive members n, n + 1 of the Fibonacci chain hierarchy. The same discussion 
applies also to the Penrose lattice or any similar hierarchically generated system. 

I t  is helpful to make a further connection, in the spirit of earlier work (Kirkpatrick 
1979, Harris and  Stinchcombe 1983, Aharony 19851, by using the Einstein formula to 
relate the diffusion constant D to the conductivity Z and density p :  

? and b are length scaling exponents for conductivity and density. Comparison with 
(9)  yields 

z = 2 + i - b  (11) 

relating i and the static exponents ( b. In turn ,6 is related to the space and fractal 
(mass) dimensions d, d,  by 6 = d - df (see, for example, Stinchcombe 198Sb), and T 
can be obtained from the conductance length scaling exponent ? from which it differs 
by ( d  - 2 ) .  so an  alternative version of (1 1) is 

(12) 

A final relationship follows from the exact equivalence (Stinchcombe 1979, Coniglio 
1981) between the scalings of conductance c and of the thermal variable D = J /  K , T  
of the Heisenberg model at low temperatures (J is the exchange constant). This implies 
that the correlation length exponent v is 

v =  I /? ,  (13) 

Thus by scaling the conductance it is possible to obtain both the static thermal exponent 
of the Heisenberg model and the dynamic exponent z provided the fractal dimension 
d,. is known. 

For both Fibonacci chain and Penrose lattice the fractal dimension is trivially the 
same as the space dimension (d,= d )  because both lattices are space tilling. I t  remains 
to carry out the conductance scaling, and this is accomplished by procedures analogous 
to those in Stinchcombe and Watson (1976). 

For the Fibonacci chain the conductance scaling for length scale factor b = 7 is 
simply given by the series combination of two conductances U,,, c,,-, (corresponding 
to A,, and B,, = An-l), resulting from decimating the intermediate site to arrive at the 
conductance corresponding to A,,, in (1):  

z = d, + t .  
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In the scale-invariant limit where u,,+,/un 
gives ‘eigenvalue’ (in the same sense as in equation (4)): 

U(L, ,+~) /U(L, , )  is independent of n this 

1 / 7 = u ( L , + , ) / u ( L , ) E ( L , + I / L , ) - i =  b-‘. (15) 

So f is unity and  (12), (13) yield 

z = 2  u = l  ( f =  1, d f =  1) (16) 

for dynamic and Heisenberg thermal exponents of the Fibonacci chain. The value of 
z is in agreement with that found by Khantha and  Stinchcombe (1987) by treating the 
particular case of diffusion. 

For the Penrose lattice the explicit scaling is more subtle, but it can be carried out 
using bond moving, which is exact in the low-temperature limit (Migdal 1975) for the 
thermal variable K which determines the (Gaussian) fluctuations of the Heisenberg 
model, and hence (by their one-to-one correspondence) also for the conductance. The 
bond-moving and decimation steps are relatively easy to identify in the Robinson 
construction of the lattice and, in the subscript notation of Godrkche et al(1986), they 
correspond to transforming four variables y ,  ( i  = 1 , .  . . ,4) which combine under a 
mapping 9 (whose square is the full recursion mapping of the Penrose lattice onto 
itself) according to 

Here the prime denotes a scaled variable (i.e. y + y’ is like increasing by unity the label 
n indicating the number of recursive construction steps); S(y , ,  y,) denotes a decimation 
combination of two bonds y , ,  y,, and P ( y , ,  y,) denotes a bond-moving combination. 
In our case the variables y ,  are conductances, y ,  = U, ,  and so the decimation and 
bond-moving combinations are respectively series and parallel combinations: 

S(U,  ; U,) = UP,/(U, +U, )  P(u,,a,)=u,+u,. (18) 
The transformation (17) is associated with length scale change L,+,/L,  = T. 

The scale invariant situation (i.e. the fixed point of (17)) is U? = U? = U: = ut and 
linearisation around the fixed point yields eigenvalue A = 1 for the conductance scale 
factor accompanying length scale factor b = T. Hence ? is zero and (12), (13) give for 
the Penrose lattice 

2 = 2  u = m  ( ? =  0, df = 2 ) .  (19) 
The infinite value of the exponent v for the Heisenberg correlation length arises 

from the marginal scaling ( A  = 1) of the thermal variable K ,  and implies that in the 
Penrose lattice the correlation length is (apart from periodic dependences) a power 
of exp K ,  as in the two-dimensional Heisenberg model (Migdal 1975). 

For both the Penrose lattice and the Fibonacci chain the value z = 2 was found for 
the dynamic exponent (for the dynamic variable R defined in ( 2 ) ) .  It should be 
emphasised that this result cannot be explained by a continuum argument (as applies 
in simpler situations like ( 6 ) )  since in the situation where the defining equation (3) 
for z applies, the scale of the repeating tile has diverged. A further point is that 
periodicities still remain in the dynamics in  the situation we discuss. A consequence 
of (16), (19) is that the accumulated numbers of states up to R for Fibonacci and 
Penrose lattices have form ( 5 )  with x( = df/z)  = 4, 1 respectively. The Fibonacci chain 
result agrees with the numerical work of Luck and Petritis (1986). 
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The present method is not able to provide details of the periodic functions, though 
it allows for their existence. It would be interesting to have numerical investigations 
for the Penrose lattice for any of the dynamic processes here considered (phonons, 
magnons, diffusion). Further work on the thermal behaviour of the low-temperature 
Heisenberg model on Fibonacci or Penrose lattices would also be desirable. Apart 
from features accessible numerically, frustration effects and low-temperature free 
energies could be investigated by the analytic method we have provided, along the 
lines of the work of Godrkche el al (1986) for the Ising model. 

It is a pleasure to acknowledge stimulating discussions on dynamics of quasi-periodic 
systems with M Khantha and  S Bell, which motivated the present work, and to thank 
Drs Godriche,  Luck and  Orland for sending a preprint of their work on Ising statistics 
on the Penrose lattice. 
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